
Picasso’s Marilyn Monroe and Other Blends: Neural Style in TensorFlow

Kathryn Siegel
Massachusetts Institute of Technology

77 Massachusetts Ave, Cambridge, MA 02139
ksiegel@mit.edu

Abstract

Artistic styles have evolved over centuries, with distinct
styles developed in different regions and time periods. Cer-
tain artistic styles, such as Impressionism or Cubism, are
immediately recognizable by the human eye, regardless of
the content or subject of the images. This paper describes
a system that uses a Convolutional Neural Network to sep-
arate and mix the style and content of images. The system
implements the algorithm presented in “A Neural Algorithm
of Artistic Style,” and is the first such implementation using
Google’s Deep Learning library, TensorFlow [10]. This pa-
per also presents novel implementations for combining mul-
tiple styles in one image and generating videos using the al-
gorithm. Results are of equal quality to the aforementioned
paper, and of equal or higher quality than other implemen-
tations found online.

1. Introduction
Paintings from certain eras in art history emulate dis-

tinct styles. For example, Impressionism is defined by
small brushstrokes and flowing patterns, whereas Cubism
is defined by abstract geometric shapes. Notably, content-
agnostic styles define these artistic eras,. Our research stud-
ies a method for regenerating images in the style of a cer-
tain era, using one or more images from that era as a style
source. These generated images, if not for anachronistic
subject content, look as if they are from the era of the style
input image(s).

Not all images generated using the style of one image
and the content of another are visually appealing. Our work
seeks to identify the qualities of style and content input im-
ages that generate pleasant results. We study multi-style
blends and video generation, sampling many different artis-
tic styles and subjects. This paper presents the most distinc-
tive results from our experimentation.

Through this work, we also compare TensorFlow [10],
Google’s new machine learning engine, with Torch. Torch
is one of the most popular machine learning systems used

for deep learning; Torch implementations of the neural style
algorithm exist [6]. We compare the time-per-iteration and
required number of iterations for our TensorFlow imple-
mentation and the Torch implementation, identifying the
more robust system.

2. Related Work

Our work is based on an algorithm presented by Leon
Gatys, Alexander Ecker, and Matthias Bethge in their pa-
per, “A Neural Algorithm of Artistic Style.” In their paper,
they discuss how Convolutional Neural Nets learn to recog-
nize objects; the neural nets first learn to extract the distinc-
tive aspects of the content of the image, and then use that
information to identify the object. As a result, layers that
an image encounters later in a neural net trained for image
recognition capture aspects of the image relating strongly
to its content. On the other hand, because of this layer-to-
layer trend, we can capture the style representation of the
image by comparing different layers and finding the corre-
lation between corresponding features. Our methods draw
heavily from the methods reported in the Gatys paper [13].

Several other implementations of this neural style algo-
rithm exist, the most popular of which is Justin Johnson’s
open-source Torch implementation. Written in Lua, the sys-
tem achieves results of equal quality to the paper, and also
allows users to blend multiple styles into one image. While
we used Johnson’s results as a quality benchmark, we did
not use his code to direct our implementation [14]. At the
outset of our research, no other TensorFlow implementa-
tions existed for the neural style algorithm. However, one
other implementation has since been published and refer-
ences our implementation [16].

Additionally, several other individuals have attempted to
create videos using the neural style algorithm. Each frame
of these videos was created separately using the algorithm,
so the video as a whole has visually disorienting discontinu-
ities between contiguous frames [12]. Our research presents
an improved method of video generation to eliminate these
discontinuities for a more aesthetically pleasing result.

1



Figure 1. The third image above, generated by our implementation of neural style, combines the content of a photograph of the MIT Great
Dome [1] with the style of Leonid Afremov’s “Rain Princess” [11] using a decaying learning rate schedule.

3. Methods
We use a VGG-19 neural net to extract image content and

style, as recommended by the Gatys paper [13]. We begin
with an input image of random noise, and extract the content
and style representation of this image. We also feed the con-
tent image and style image we want to combine through the
VGG-19 neural net. The algorithm calculates loss functions
for content and style, and then uses an Adam Optimizer for
gradient descent. Let ~c and ~x be the original content and
generated output images, and let Cl and X l be the feature
representations of these inputs at layer l. We calculate con-
tent loss using Cl and X l at the relu4 2 layer of the VGG-19
neural net using the following equation, where wc is content
weight.

Lcontent(~x,~c, l) = 2wc ∗
∑

i,j (X
l
ij − Cl

ij)
2

size(Cl)
(1)

Our approach differs slightly from the methods pre-
sented in the Gatys paper. We use mean squared error in-
stead of squared error in the loss calculation, as the former
produces better results. The Gatys paper uses layers other
than relu4 2 in its calculation. For our style loss calculation,
we compute the correlation between the feature responses
of different layers of the neural net using a Gram matrix.
Let Gl

x and Gl
s be the Gram matrices for the original style

and generated output images, ws be the style weight, and
L be the set of layers at which we calculate style loss. L
includes the layers relu1 1, relu2 1, relu3 1, relu4 1, and
relu5 1. We calculate style loss using the following equa-
tion.

Lstyle = ws ∗
∑
l∈L

2 ∗
∑

i,j (G
l
xi,j −Gl

si,j)
2

size(Gl
s)

(2)

Our implementation then uses back-propagation to ad-
just the input image such that its content and style repre-
sentations more closely match the content representation of

the content image and the style representation of the style
image, respectively. Over many iterations, this input image
of random noise is transformed into an image with the de-
sired content and style. The examples in this paper were
generated using 1000 to 10,000 iterations.

4. Results
Our implementation achieves results of equal quality to

the results from the Gatys paper; figure 1 shows a sample
result produced by our implementation [13]. In this section,
I provide example results from our implementation and dis-
cuss our process for generating multi-style images and neu-
ral style videos. The code for our implementation can be
found at git.io/style.

4.1. Core Implementation

Our implementation uses the algorithm introduced in the
methods section to generate an output image; there are sev-
eral parameters used in this training process. We tuned the
algorithm parameters such that the output seemed balanced
and aesthetically pleasing. These parameters included con-
tent weight, style weight, TV weight (which helps filter out
noise), learning rate, style scale, and number of training it-
erations. In general, we found a content weight 2-3 orders
of magnitude higher than the style weight led to the best re-
sults. These relative weights produced images that were im-
mediately identifiable as the content image, did not signifi-
cantly warp key edges, and imbued the style image strongly
within the image. Figure 2 visually demonstrates the visual
effect of modulating the content weight to style weight ratio
from the values we determined to be optimal. A TV weight
of about the same magnitude as the style weight eliminated
out-of-place pixels that were the product of noise. While
the learning rate had less of an impact on the outputted im-
age, we obtained slightly more aesthetically pleasing results
with a decaying learning rate. Furthermore, our implemen-
tation produced the best results when the style scale was left
untouched, likely because the image style was more recog-

2



Figure 2. This sequence of images demonstrates the effect of modulating the content weight to style weight ratio. The top panel of the
image shows the two images used to generate the blends: Picasso’s “Le Rêve” [5] is the style input and a black-and-white photograph of
Marilyn Monroe [4] is the content input. The bottom row of images ranges from a very low content-to-style weight ratio on the left to a
very high content-to-style weight ratio on the right. The leftmost images demonstrate the extreme warping effect created by too high of a
style weight. The rightmost images demonstrate how too high of a content weight results in the style being indistinguishable. Our default
content-to-style weight ratio was 500, which was used to generate the fourth blended image.

nizable at its original scale. Finally, images produced by
the system emulated the style image more thoroughly with
more training iterations; we determined that training with
over 2000 iterations produces the best results.

4.2. Multi-Style Support

Our implementation accepts multiple style inputs; users
can specify the style blend weights corresponding to the in-
putted style images. We combined many different styles
to determine the factors that would contribute towards an
aesthetically pleasing result. We found that mixing block-
ier styles such as Cubism with more fine-grained styles
such as Impressionism gave the best results. Specifically,
when mixing a blocky style with a more detailed style, one
can still clearly identify both styles in the resulting image.
Blending two style of similar texture size produced images
of ambiguous style and grainy image quality. Figure 3
demonstrates how the textures of the style inputs impact the
aesthetic quality of the result. The style images in the top
row both have fine-grained textures; the leaves in Kahlo’s
painting have small details, and Monet’s painting is formed
of the characteristic small brushstrokes of the impression-
ist era. The resulting image, shown as the fourth image in
the top row, does not clearly emulate either style, and the
blended style is noisy and aesthetically unpleasing. In con-
trast, the style images in the bottom row have blocky and
fine-grained style textures, respectively. The resulting im-
age, shown as the fourth image in the bottom row, clearly
possesses aspects of both input styles; the two styles seem

to complement, rather than conflict with, each other.
Furthermore, we allow users to specify style blend

weights for the inputted style images. Varying the style
blend weights of two style images revealed that fine-grain
textures tend to dominate the appearance of the result. The
Van Gogh-Picasso-Stata blend in figure 3 was generated by
setting the Picasso style blend weight four times greater
than the Van Gogh style blend weight. When we experi-
mented with weighing the Van Gogh style more, we found
that the defining aspects of Picasso’s style in the resulting
image became nearly indistinguishable.

4.3. Video Generation

We developed a novel approach to generating video us-
ing our implementation of the neural style algorithm. Our
script runs the algorithm on each frame of the video sepa-
rately, similarly to other implementations; however, we seed
the training run for every frame with the previous generated
neural style frame. This method produces sensible conti-
nuities between frames, significantly decreasing any dis-
orienting jumps of the style’s manifestation in contiguous
frames. Sample videos can be found by visiting http://kt-
siegel.com/neural-style-web/.

4.4. Comparison to Torch Implementation

Our implementation took approximately three times
longer per iteration than the Torch implementation of neu-
ral style. Nonetheless, our implementation generated results
of equal quality to the Torch implementation when run for

3



Figure 3. The figure above shows two different multi-style image blends. In each row, the content image input is shown first, followed by
the two blended style images. The last image in each row is the output image produced by our implementation. The input images in the top
row from left to right are a photograph of the Golden Gate Bridge [7], Frida Kahlo’s “Self-Portrait with Thorn Necklace and Hummingbird”
[9], and Claude Monet’s “Lavacourt Under Snow” [8]. The input images in the bottom row from left to right are a photograph of the MIT
Stata Center [15], Pablo Picasso’s “Dora Maar” [2], and Vincent Van Gogh’s “Starry Night” [3]
.

the same number of iterations. System inefficiencies clearly
exist within TensorFlow; since it is a new library actively
maintained by Google, we expect the performance of Ten-
sorFlow to improve over time as the system is refined.

5. Conclusion

Our implementation of “A Neural Algorithm of Artis-
tic Style” generates aesthetically pleasing style and content
blends given the appropriate input parameters. This work
explores the optimal parameter settings for image blend
generation and studies the effects of modulating these pa-
rameters away from their optimal values. Our approach di-
verges slightly from the Gatys paper; we calculate loss us-
ing a slightly different error metric and different layers of
the neural net, and we use an Adam Optimizer for gradient
descent rather than L-BFGS [13]. While we found the ad-
justments to the loss calculation improved the visual results,
we could not integrate L-BFGS with our system, because it
is not supported in TensorFlow. Future work could explore
adding L-BFGS to TensorFlow, then substituting the Adam
Optimizer with this alternative algorithm.

Regarding our style blending technique, the system gen-
erates visually compelling results given style inputs with
very different texture sizes, but does not blend similar tex-
tures well. Future research could investigate methods to
improve multi-style blends. Finally, our video processing
technique produced visually coherent videos using the neu-
ral style algorithm, an improvement over existing open-

source implementations.

References
[1] http://www.therpf.com/showthread.php?t=

97257.
[2] https://s-media-cache-ak0.

pinimg.com/236x/5f/c9/4f/
5fc94f54df98d50bfae9b1807f3c5272.jpg.

[3] http://www.wikiart.org/en/
vincent-van-gogh/the-starry-night-1889.

[4] Audrey hepburn or marilyn monroe? http:
//www.playbuzz.com/ufg201110/
audrey-hepburn-or-marilyn-monroe.

[5] Le rêve. https://en.wikipedia.org/wiki/Le_
R%C3%AAve_(painting).

[6] Torch. https://github.com/torch/torch7.
[7] https://en.wikipedia.org/wiki/File:

GoldenGateBridge-001.jpg, 2007.
[8] https://commons.wikimedia.org/wiki/File:

Monet,_Lavacourt-Sunshine-and-Snow.jpg,
2010.

[9] https://en.wikipedia.org/wiki/Frida_
Kahlo, 2015.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,
R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

4

http://www.therpf.com/showthread.php?t=97257
http://www.therpf.com/showthread.php?t=97257
https://s-media-cache-ak0.pinimg.com/236x/5f/c9/4f/5fc94f54df98d50bfae9b1807f3c5272.jpg
https://s-media-cache-ak0.pinimg.com/236x/5f/c9/4f/5fc94f54df98d50bfae9b1807f3c5272.jpg
https://s-media-cache-ak0.pinimg.com/236x/5f/c9/4f/5fc94f54df98d50bfae9b1807f3c5272.jpg
http://www.wikiart.org/en/vincent-van-gogh/the-starry-night-1889
http://www.wikiart.org/en/vincent-van-gogh/the-starry-night-1889
http://www.playbuzz.com/ufg201110/audrey-hepburn-or-marilyn-monroe
http://www.playbuzz.com/ufg201110/audrey-hepburn-or-marilyn-monroe
http://www.playbuzz.com/ufg201110/audrey-hepburn-or-marilyn-monroe
https://en.wikipedia.org/wiki/Le_R%C3%AAve_(painting)
https://en.wikipedia.org/wiki/Le_R%C3%AAve_(painting)
https://github.com/torch/torch7
https://en.wikipedia.org/wiki/File:GoldenGateBridge-001.jpg
https://en.wikipedia.org/wiki/File:GoldenGateBridge-001.jpg
https://commons.wikimedia.org/wiki/File:Monet,_Lavacourt-Sunshine-and-Snow.jpg
https://commons.wikimedia.org/wiki/File:Monet,_Lavacourt-Sunshine-and-Snow.jpg
https://en.wikipedia.org/wiki/Frida_Kahlo
https://en.wikipedia.org/wiki/Frida_Kahlo


den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous sys-
tems, 2015. Software available from tensorflow.org.

[11] L. Afremov. Rain princess. http://afremov.com/
RAIN-PRINCESS.html.

[12] M. Bartoli. neural-animation. https://github.com/
mbartoli/neural-animation, 2015.

[13] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm
of artistic style. CoRR, abs/1508.06576, 2015.

[14] J. Johnson. neural-style. https://github.com/
jcjohnson/neural-style, 2015.

[15] L. Speck. Looking at mit stata center.
http://larryspeck.com/2011/04/07/
mit-stata-center/, 2011.

[16] woodrush. “neural art” in tensorflow. https://github.
com/woodrush/neural-art-tf, 2015.

5

http://afremov.com/RAIN-PRINCESS.html
http://afremov.com/RAIN-PRINCESS.html
https://github.com/mbartoli/neural-animation
https://github.com/mbartoli/neural-animation
https://github.com/jcjohnson/neural-style
https://github.com/jcjohnson/neural-style
http://larryspeck.com/2011/04/07/mit-stata-center/
http://larryspeck.com/2011/04/07/mit-stata-center/
https://github.com/woodrush/neural-art-tf
https://github.com/woodrush/neural-art-tf

